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Spatial Prediction in Small Area Estimation

Martin Vogt1, Partha Lahiri2, Ralf Münnich3

ABSTRACT

Small area estimation methods have become a widely used tool to provide accurate estimates 
for regional indicators such as poverty measures. Recent research has provided evidence 
that spatial modelling still can improve the precision of regional and local estimates. In this 
paper, we provide an intrinsic spatial autocorrelation model and prove the propriety of the 
posterior under a flat p rior. F urther, we show using the SAIPE poverty data that the gain 
in efficiency using a spatial model can be essentially important in the presence of a lack of 
strong auxiliary variables.
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1. Introduction

International programmes such as the United Nations Sustainable Development Goals
(SDG), United States Small Area Income and Poverty (SAIPE), the strategy for combating
poverty in the European Union need poverty estimates at disaggregated levels for making
public policies. Survey data to provide the necessary information on indicators for poverty
and social exclusion are generally constructed at regional rather than local levels. Due to
budgetary constraints, it is generally not feasible to allocate samples for all conceivable
small areas in which different stakeholders may be interested. The estimation for these
unplanned small areas may become problematic if the survey does not provide any sample
information for these local areas. A standard solution for this problem is to employ a regres-
sion method that exploits a possible relationship between the variable of interest and a set of
predictor variables available for both planned and unplanned areas. The method essentially
generates synthetic estimates that are subject to considerable bias since the method does not
use any direct information on the variable of interest for small areas. One potential way to
reduce the bias is to utilize data on the variable of interest from neighbouring areas. This can
be achieved by incorporating small area specific random effects, which are then linked by a
spatial model; see Saei and Chambers (2005). The method is indeed much more complex
than the regression method and its success depends on the ability to define a suitable spatial
neighbourhood, specification of a spatial model and estimation of additional parameters of
the spatial model.
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In the context of mapping the risk from a disease for granular levels, spatial models 
have been implemented by both empirical Bayes (see, e.g., Clayton and Kaldor, 1987) 
and hierarchical Bayes (see, Maiti, 1998) methods. Researchers also considered empirical 
best prediction approach to implement various extensions of the well-celebrated Fay-Herriot 
small area model that incorporates spatial correlations; see Saei and Chambers , 2005, Singh 
et al. (2005), Petrucci et al. (2005), Petrucci and Salvati (2006), Petrucci and Salvati 
(2008), Petrucci and Salvati (2009), and others. For the hierarchical Bayes approach to the 
spatial Fay-Herriot models, see You and Zhou (2011) and Chung and Datta (2022).

The estimation methodologies developed in the papers cited in the preceding paragraph 
do not cover the intrinsic CAR model described in Besag et al. (1991) because these papers 
exclude models with spatial correlation 1. In this paper, we develop a hierarchical Bayes 
methodology for an extension of the Fay-Herriot model (Fay and Herriot, 1979) that incor-
porates spatial neighbourhood using a intrinsic CAR model. Thus the proof of posterior 
propriety for our model does not follow as a corollary of Chung and Datta (2022). Our 
research is following the PhD thesis of (Vogt , 2010) and is closely linked to the research of 
Ghosh et al. (1998) and Sun et al. (1999). Note that Sun et al. (1999) extended the research 
of Ghosh et al. (1998) and show the propriety of the posterior distribution of hierarchical 
models using CAR(1) distributions. We apply the same spatial structure and the same prior 
distributions considered by Sun et al. (1999). However, Sun et al. (1999) assume the sam-
pling variances to be unknown, but equal and, therefore, the model does not include the 
Fay-Herriot type model with known but unequal sampling variances. Hence, their theorem 
does not ensure the propriety of posterior for the model considered in this paper. We adapt 
the theorem of Sun et al. (1999) to include the spatial general linear mixed model with 
known but unequal sampling variances.

We apply the proposed model to data of the SAIPE program in the United States. Our 
application shows that especially if non-sampled areas are present, the incorporation of 
spatial neighbourhood improves the estimation. The usefulness of the spatial model can 
also be observed when the quality of auxiliary information is not good, which is often the 
case in many applications. However, even if the spatial information is already included in 
the auxiliary variables, the inclusion of the spatial structure does not worsen the results.

The paper is structured as follows. In the next Section, we first obtain a  closed-form 
expression for the Bayes estimator of the small area mean when no sample from the area is 
available. For this part of the paper, we consider a non-intrinsic CAR model with known 
hyperparameters. Our analytical calculations allow us to interpret the Bayes estimator and 
compare it with the alternative synthetic estimator. We then propose an extension of the 
Fay-Herriot model (see Fay and Herriot, 1979) that incorporates spatial correlations using 
an intrinsic CAR model. We show the propriety of the posterior for this proposed model 
under certain regularity conditions. Using the Small Area Income and Poverty (SAIPE) 
data of the United States Census Bureau (see Bell and Franco , 2017), we demonstrate in 
the subsequent Section that spatial correlation could considerably improve on the associated 
hierarchical Bayes methodology if the area specific auxiliary data a re e ither weak or not 
available. Our investigation reveals that the need for complex spatial models diminishes as 
strong area specific predictor variables become available.
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2. Theory

In this section, the Fay-Herriot model is extended by including prior distributions on the
regression coefficient and the variance component. Afterward, the independence assump-
tion of the random intercepts is replaced by the conditional autoregressive structure. Then,
a formula for the mean of the unsampled area is derived, and finally the propriety of the
posterior distribution is proved for our intrinsic CAR Fay-Herriot model.

2.1. Spatial Hierarchical Extension of the Fay-Herriot Model

The Fay-Herriot model is given by:

Yi|θi
ind∼ N(θi , σ

2
ε,i) (1)

θi = Xiβ +ui

ui
ind∼ N(0 , σ

2
u I) ,

where Yi is an estimate of the true small area mean θi, the sampling variances σ2
ε,i are

assumed to be known. Xi is s× 1 vector of known auxiliary variables, β is s× 1 vector of
unknown regression coefficients, i = 1, · · · ,m.

We also consider the following extension of the above model that incorporates possible
spatial correlations:

Yi|θi
ind∼ N(θi , σ

2
ε,i),

θi = Xiβ +ui

u ∼ N(0 , σ
2
u (I − pQ̃)−1W ) (2)

where W = diag(1/
k

∑
j=1

Qi, j) and Q̃i, j =
Qi, j

∑
k
j=1 Qi, j

are the weights suggested by Banerjee

et al. (2004, p. 79). The neighborhood matrix Q is symmetric with Qii = 0.
The overall goal of this section is to analyze how effective the spatial hierarchical Fay-

Herriot model (2) is, in terms of prediction for one unsampled area, compared to the corre-
sponding hierarchical Bayes methodology without spatial correlations. To do this a formula
for the mean of the unsampled area is derived in the following section.

2.2. The Predicted Mean of One Unsampled Area

In order to derive a formula for the mean of the unsampled area under model (2), the
conditional distribution of Y1 representing the unsampled area given the other areas Y2 is
needed. Assume that the hyperparameters of model (2), i.e., β , σ2

u and p, are known.
Then, model (2) may be written in the form:

Y ∼ N(µ , Σ)⇔
(

Y1

Y2

)
∼ N

((
X1β

X2β

)
,

[
Σ11 Σ12

Σ21 Σ22

])
, (3)
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where Σ := σ2
ε,iI +(I − pQ̃)−1Wσ2

u . Using standard results, we have:

Y1 | (Y2 = y2)∼ N(µ̄ , Σ̄) ,

where µ̄ = µ1 +Σ12Σ
−1
22 (y2 −µ2)

and Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21 .

The conditional mean µ̄ may be used to predict one unsampled area. Using the block matrix
inversion formula:

M =

[
A B
C D

]
⇒ M−1 =

[
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

]
(4)

an alternative formulation of µ̄ can be derived. The new specification shows explicitly how
the spatial correlations enter the model.

Lemma 1 Consider the model (2) with known β , σ2
ε,i , and σ2

u in the form (3). Then, the
mean µ̄ of the conditional distribution of the unsampled area Y1 given the other areas Y2,

may be written as:

µ̄ = X1β −σ
2
u B

[
σ

2
ε,22I22W−1

22 (D−CA−1B)+σ
2
u I22

]−1
(y2 −X2β ) , (5)

where A is the 1,1 element, B the 1,2 : n elements, C the 2 : n,1 and D the 2 : n,2 : n elements
of ΣT := I − pQ̃ . Thus, A represents the variance of the first area, B and C the correlation
between the unsampled and the sampled areas, and D includes the spatial dependence pa-
rameter p between the sampled areas.

Proof 1 Model (3) follows with the block matrix inversion formula (4):

Σ = σ
2
ε,iI +Σ

−1
T Wσ

2
u

=

[
σ2

ε,11 +
(
(A−BD−1C)−1

)
W11σ2

u −A−1B(D−CA−1B)−1W22σ2
u

−D−1C(A−BD−1C)−1W11σ2
u σ2

ε,22I22 +(D−CA−1B)−1W22σ2
u

]

=:
[

Σ11 Σ12

Σ21 Σ22

]
.

And thus:

µ̄ = X1β +Σ12Σ
−1
22 (y2 −X2β )

= X1β −A−1B(D−CA−1B)−1W22σ
2
u
[
σ

2
ε,22I22 +(D−CA−1B)−1W22σ

2
u
]−1

(y2 −X2β ) .

Using the fact that M−1N−1 = (NM)−1 with M = (D−CA−1B)−1W22 ,
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N =
[
σ2

ε,22I22 +(D−CA−1B)−1W22σ2
u

]−1
and A−1 = 1 it follows that:

µ̄ = X1β −σ
2
u A−1B

[
(σ2

ε,22I22 +(D−CA−1B)−1
σ

2
uW22) ·W−1

22 (D−CA−1B)
]−1

(y2 −X2β )

= X1β −σ
2
u B

[
σ

2
ε,22I22W−1

22 (D−CB)+σ
2
u I22

]−1
(y2 −X2β ) .

□

The following example clarifies the meaning of formula (5).

Example 1 In this example the mean µ̄ of formula (5) will be calculated for a situation
with 3 areas, where the first area is unsampled. A nearest neighbor structure is assumed,
which means that the first area is a neighbor of the second, the second area is a neighbor
of the first and the third area, and finally the third area has got area two as a neighbor (see
Figure 1).

Figure 1: Nearest neighbor structure of 3 areas in a row.

Therefore, the neighborhood matrix Q is as follows:

Q =

 0 1 0
1 0 1
0 1 0

 .

Dividing each row of Q by the number of neighbors (Q̃i, j =
Qi, j

∑
3
j=1(Qi, j)

) yields:

Q̃ =

 0 1 0
1
2 0 1

2
0 1 0

 .

The weight matrix W = diag(
1

3
∑
j=1

(Qi, j)

) is given by:

W =

 1 0 0
0 1

2 0
0 0 1

 .
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In the following the mean of one unsampled area shall be calculated using formula (5).
Since the first area is unsampled, W22 are the weights for the second and third area, given
by

W22 =

[ 1
2 0
0 1

]
.

Now µ̄ may be calculated using formula (5). First:

σ
2
ε,22I22W−1

22 =

[
2σ2

ε,2 0
0 σ2

ε,3

]
(6)

and:

I − pQ̃ =

 1 −p 0
− p

2 1 − p
2

0 −p 1

=:
[

A B
C D

]
, (7)

where A = 1 , B =
[
−p 0

]
, C =

[
− p

2
0

]
, and D =

[
1 − p

2
−p 1

]
.

Using formula (7) yields:

D−CA−1B =

[
1− p2/2 −p/2

−p 1

]
. (8)

With (6) and (8) it follows that:

σ
2
ε,22I22W−1

22 (D−CA−1B)+σ
2
u I22 =

[
2σ2

ε,2(1− p2/2)+σ2
u −σ2

ε,2 p
−pσ2

ε,3 σ2
ε,3 +σ2

u

]
.

Therefore:

(σ2
ε,22I22W−1

22 (D−CA−1B)+σ
2
u I22)

−1 =
1
m

[
σ2

ε,3 +σ2
u σ2

ε,2 p
pσ2

ε,3 2σ2
ε,2(1− p2/2)+σ2

u

]
,

where
m := (2σ

2
ε,2(1− p2/2)+σ

2
u )(σ

2
ε,3 +σ

2
u )−σ

2
ε,2σ

2
ε,3 p2 .

Now all the necessary parts to calculate µ̄ are derived. Thus:

µ̄ = X1β −σ
2
u B

[
σε,22I22W−1

22 (D−CA−1B)+σ
2
u I22

]−1
(y2 −X2β )

= X1β −σ
2
u [ −p 0 ]

1
m

[
σ2

ε,3 +σ2
u σ2

ε,2 p
pσ2

ε,3 2σ2
ε,2(1− p2/2)+σ2

u

]
(y2 −µ2) .

Matrix calculation yields:

µ̄ = X1β +
p
m

[
(σ2

ε,3 +σ2
u ) pσ2

ε,2

]
(y2 −X2β ) . (9)
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Out of formula (9) the following things may be observed.

1. The resulting estimate is a linear combination between the synthetic estimate X1β

and information of the other areas (y2 −X2β ).

2. Weight is given to neighbors (area 2) and to non-neighbors (area 3).

3. Since σ2
u > 0 and p < 1 it follows that if σ2

ε,3 and σ2
ε,2 are of equal size, more power

is given to the neighborhood area 2.

4. If σ2
ε,2 is large and thus the information of the second area is low, then more strength

is taken from area 3 and vice versa.

5. If p = 0 and thus independence is assumed, just the synthetic estimate will be used.

2.3. Propriety of the Posterior Distribution

In applications the spatial correlation term p is frequently assumed to equal 1. Unfor-
tunately, this leads to an improper prior distribution on the random effects u, the so-called
intrinsic CAR model (cf. Besag et al. , 1991 and Besag and Kooperberg , 1995). Thus, the
propriety of the posterior distribution is not ensured.

Sun et al. (1999, p. 346) stated the propriety for the intrinsic CAR model with unknown,
but equal sampling variances. Let Y = (Y1, · · · ,Yn) be the vector of n observations and let
X and Z be the n× r and n× k design matrices. The least squares estimator for (β ′,u′) is
given by (β̂ , û) = ((X ,Z)′(X ,Z))−(X ,Z)′Y , where ((X ,Z)′(X ,Z))− is a generalised inverse
of (X ,Z)′(X ,Z). Finally, let SSE =Y ′{In−(X ,Z)((X ,Z)′(X ,Z))−}Y be the sum of squared
errors. Then, the following theorem holds (cf. Sun et al. , 1999, p. 346).

Theorem 1 Consider the linear mixed model:

Y = Xβ +Zu+ ε ,

where ε ∼ N(0 , σ2
ε I). Assume the prior distributions f (u) ∝ exp

(
− 1

2σ2
u

u′Bu
)
, where

B is nonnegative definite, f (β ) ∝ 1, gε(σ
2
ε ) ∝ (σ2

ε )
−(aε+1) exp(−bε/σ2

ε ) and gu(σ
2
u ) ∝

(σ2
u )

−(au+1) exp(−bu/σ2
u ). The variance components are assumed to be a priori indepen-

dent. Assume the following conditions:

• rank(X) = r and rank(u′R1u+B) = k, where R1 = In +X(X ′X)−1X ′

• au > 0 and bu > 0

• n− r− k−2aε > 0 and SSE +2bε > 0

Then, the joint posterior distribution of (β ,Z,σ2
ε ,σ

2
u ) given Y is proper.

In this theorem the sampling variances are assumed to be unknown, but equal. There-
fore, this theorem does not ensure the propriety for a Fay-Herriot type model with known
but unequal sampling variances. However, Theorem 1 can be adapted to the spatial general
linear mixed model with known, unequal sampling variances, which includes the spatial
hierarchical Fay-Herriot model (2).
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Theorem 2 Consider the linear mixed model Y = Xβ + Zu + ε , where ε ∼ N(0 , Σε)

with known sampling variance matrix Σε . In addition, the following prior distributions
are assumed: f (u) ∝ exp

(
− 1

2σ2
u

u′Bu
)

, where B is nonnegative definite, f (β ) ∝ 1 and

g(σ2
u ) ∝ (σ2

u )
−(a+1) exp(−b/σ2

u ) . Assume the following conditions:

• rank(X) = r and rank(u′R1u+B) = k, where R1 = Σ−1
ε +Σ−1

ε X(X ′Σ−1
ε X)−1X ′Σ−1

ε

• a > 0 and b > 0 .

Then, the joint posterior distribution of (β ,u,σ2
u ) given Y is proper.

Proof 2 The idea is to integrate the joint posterior density of (β ,u,σ2
u ) with respect to the

three variables: β ,u, and σ2
u . The joint posterior density is proportional to:

G := (σ2
u )

− 1
2 k · exp{−1

2
(Y −Xβ −Zu)′Σ−1

ε (Y −Xβ −Zu)− uT Bu
2σ2

u
} ·g(σ2

u ) .

The proof is split up into six parts. In parts 1 and 2 the joint posterior is transformed for
better handling and integrated with respect to β . Afterward, in parts 2 and 3 the integrated
posterior is rearranged to allow for an easier integration with respect to u. Finally, in parts
5 and 6 the joint posterior is bounded and thus the existence is shown.

1. First, G is transformed since this helps to better handle the integration with respect
to β . This is done by adding and subtracting X β̂ and Zû. It follows that:

(Y −Xβ −Zu)′Σ−1
ε (Y −Xβ −Zu) (10)

= (Y −X β̂ −Zû−X(β − β̂ )−Z(u− û))′Σ−1
ε ·

·(Y −X β̂ −Zû−X(β − β̂ )−Z(u− û)).

Expanding (10) yields:

(Y −Xβ −Zu)′Σ−1
ε (Y −Xβ −Zu) (11)

= e′Σ−1
ε e

− e′Σ−1
ε X(β − β̂ )+

+ (β − β̂ )′X ′
Σ
−1
ε X(β − β̂ )−

− (β − β̂ )′X ′
Σ
−1
ε e+

+ (β − β̂ )′X ′
Σ
−1
ε Z(u− û)+(u− û)′Z′

Σ
−1
ε X(β − β̂ )−

− e′Σ−1
ε Z(u− û)−

− (u− û)′Z′
Σ
−1
ε e+

+ (u− û)′Z′
Σ
−1
ε Z(u− û),

where e := Y −X β̂ −Zû.

2. Now all of the factors in (11) containing (β − β̂ ) are collected:

(Y −Xβ −Zu)′Σ−1
ε (Y −Xβ −Zu)= (β − β̂ −C0−C1)

′X ′
Σ
−1
ε X(β − β̂ −C0−C1)+Const0,
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where
C0 = (X ′

Σ
−1
ε X)−1X ′

Σ
−1
ε e,

C1 = (X ′
Σ
−1
ε X)−1X ′

Σ
−1
ε Z(u− û).

Note that X ′Σ−1
ε X is symmetric. Const0 is a constant which contains all the factors

independent of β :

Const0 = (u− û)′Z′
Σ
−1
ε Z(u− û)− (u− û)′Z′

Σ
−1
ε e−

− e′Σ−1
ε Z(u− û)−C′

1X ′
Σ
−1
ε XC0 −

− C′
1X ′

Σ
−1
ε XC1 −C′

0X ′
Σ
−1
ε XC1 −C′

0X ′
Σ
−1
ε XC0

Integrating G with respect to β yields:

∫
Rp

G dβ =
(2π)

1
2 p|X ′Σ−1

ε X |− 1
2

(σ2
u )

1
2 k

exp
{
−1

2
Const0 −

u′Bu
2σ2

u

}
·g(σ2

u ). (12)

3. Now, the integration with respect to u is prepared. Therefore, the exponential function
(12) is calculated and transformed by collecting the terms containing u in Const0 :

(a) C′
0X ′Σ−1

ε XC0 which is independent of all integration variables and will be seen
as a constant.

(b) C′
0X ′Σ−1

ε XC1 = ((X ′Σ−1
ε X)−1X ′Σ−1

ε e)′X ′Σ−1
ε Z(u− û)

(c) C′
1X ′Σ−1

ε XC1 = (u− û)′Z′Σ−1
ε X(X ′Σ−1

ε X)−1X ′Σ−1
ε Z(u− û)

(d) C′
1X ′Σ−1

ε XC0 =−((X ′Σ−1
ε X)−1X ′Σ−1

ε Z(u− û))′X ′Σ−1
ε e

(e) e′Σ−1
ε Z(u− û)

(f) (u− û)′Z′Σ−1
ε e

(g) (u− û)′Z′Σ−1
ε Z(u− û)

This leads to:

Const0 = (u− û−C2)
′Z′R1Z(u− û−C2)+Const1, (13)

where
C2 = (Z′R1Z)−1Z′(R1 +Σ

−1
ε )e

includes the above terms with one (u− û). The constant Const1 contains all of the
terms independent of u which arise by including C2 in the formula.

4. Now,
u′Bu
σ2

u
is considered. Therefore, formula (13) of the previous step is adapted:

Const0 +
u′Bu
σ2

u
= (u− û−C2)

′Z′R1Z(u− û−C2)+Const1 +
u′Bu
σ2

u
.
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This leads to

u′Z′R1Zu+
u′Bu
σ2

u
+other terms. (14)

A rearrangement of terms in (14) yields:

(u−C3)
′R2(u−C3)− (C3)

′R2C3, (15)

where R2 = Z′R1Z +
B

σ2
u

and C3 = R−1
2 Z′R1Z(û+C2).

Using the integrated G in (12) together with (15), it follows that:

∫
Rk

∫
Rr

G dβdu =
(2π)

1
2 (r+k)|X ′Σ−1

ε X |− 1
2

(σ2
u )

1
2 k+a+1|R2|

1
2

exp
{
−(C3)

′R2C3 −
b

σ2
u

}
. (16)

Integration leads to the factor |R2|−
1
2 in front of the exponential function. Since

Z′R1ZR−1
2 Z′R1Z in (C3)

′R2C3 is nonnegative definite this term can be bounded by
0 and thus discarded out of the integral.

5. Using arguments similar to Sun et al. (1999, p. 346), we get:

|R2|−
1
2 ≤ {min(1,(σ2

u )
−1)k · |Z′R1Z +B|}−

1
2

< (1+(σ2
u )

k
2 ) · |Z′R1Z +B|−

1
2 . (17)

6. Finally, combining (16) and (17), we have:∫
Rk

∫
Rr

G dβdu ≤ (2π)r+k|X ′
Σ
−1
ε X |−

1
2 |Z′R1Z +B|−

1
2 (J1 + J2) ,

where

J1 =
1

(σ2
u )

1
2 k+a+1

exp
(
− b

σ2
u

)
,

and

J2 =
1

(σ2
u )

a+1 exp
(
− b

σ2
u

)
.

Since a > 0 and b > 0 the integrals J1 and J2 exist with respect to σ2
u .

This completes the proof. □

Remark:

1. In the theorem presented in Sun et al. (1999), the sum of squared errors SSE arises
in the assumptions. This term is not important in our case, since it depends only on
the known variance-covariance matrix Σε .

2. In the original proof, all terms containing e cancel out of formula (11), since SSE is
orthogonal to e . This needs not be the case if Σε is included in the term.



STATISTICS IN TRANSITION new series, June 2023 87

3. An empirical comparison of the intrinsic CAR Fay-Herriot model
and non-spatial Fay-Herriot models

In the following, we compare the Fay-Herriot model (1) with the intrinsic CAR Fay-
Herriot model (2) (i.e. with p = 1) in terms of prediction using real data. To implement the
intrinsic CAR Fay-Herriot model, we used priors described in Theorem 2. As for the im-
plementation of the Fay-Herriot model (1), we considered the following prior distributions
proposed by Sun et al. (1999):

β ∝ Uniform(Rs), Rs being the s-dimensional Euclidean space,

1/σ
2
u ∼ Γ(0.5 , 0.005).

3.1. Data

We consider the data from the Small Area Income and Poverty Estimates of the U.S.
Census Bureau for the years 1989 and 1993 . For details on the data, see Bell and Franco
(2017). Four covariates are available: Internal Revenue Service (IRS) pseudo child poverty
rate (x1), IRS non-filer rate (x2), food stamp participation rate (x3) and census residuals
(x4). The known sampling variances are denoted by d . In this application the official Small
Area Income and Poverty Estimates (SAIPE) estimates are treated as a gold standard. In
the application 48 contiguous United States and the District of Columbia are considered.
Every area is left out once and is predicted by means of spatial and non-spatial models.
This procedure is repeated for different numbers of covariates (0−4) and for the years 1989
and 1993 . The estimation results are compared to the official estimates (treated as gold
standard in this paper).

3.2. Results

Since the results are similar for the years 1989 and 1993 the following interpretation will
just be for the year 1993. Table 1 contains the simulation results for the year 1993 and Table
2 for the year 1989 . Column 1 of Table 1 shows different measures of comparison, based on
the squared deviance between the estimator and the official value, the absolute deviance and
the maximum of the deviance. Since each of the 49 states is left out once, the deviances are
averaged over all states. The deviances are constructed for the model containing all of the
four covariates, no covariate or each of the covariates alone. Columns 2 and 3 contain the
corresponding values for the spatial and non-spatial models. The last two columns compare
the deviances of the spatial and non-spatial model with each other (difference and ratio).
The following observations can be made:

1. If no covariates are included, the deviances for the spatial and non-spatial models are
large. These values decrease as the quality and number of covariates increases. The
lowest value is reached, when all covariates are included.

2. The ratio of the non-spatial deviance compared to the spatial is large, if no or weak
covariates are included. The ratio decreases, if the quality of the covariates improves.
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Table 1: Simulation results for the year 1993 .

spatial non-sp. spatial−non-sp.
non-sp.
spatial

1
49 ·

49
∑

i=1
((Estimatori −Officiali)2)

all 1,08 1,08 0,00 1,00
x1 7,76 12,79 -5,03 1,65
x2 17,04 27,44 -10,40 1,61
x3 4,74 4,63 0,11 0,98
x4 23,42 33,55 -10,13 1,43

without 25,14 34,01 -8,86 1,35
1
49 ·

49
∑

i=1
(|Estimatori −Officiali|)

all 0,79 0,79 0,00 1,00
x1 2,20 2,84 -0,65 1,29
x2 3,00 4,04 -1,05 1,35
x3 1,76 1,78 -0,02 1,01
x4 3,76 4,85 -1,09 1,29

without 3,85 4,89 -1,04 1,27
max(|Estimator−Official|)

all 0,07 0,07 0,00 1,00
x1 0,12 0,17 -0,05 1,38
x2 0,24 0,30 -0,05 1,21
x3 0,12 0,12 0,00 0,99
x4 0,26 0,29 -0,03 1,12

without 0,29 0,27 0,02 0,93

3. If all covariates are included there is no gain by using the spatial model.

The same effects can be seen, in Figures 2, 4 and 5. These figures compare the predicted 
values of the spatial and non-spatial models with varying numbers of covariates. Figure 2 
shows that if all covariates are included, there is no visible difference between the spatial and 
non-spatial models. However, if no covariate is included, then the predicted values of the 
non-spatial model compared to the official values are almost constant. But the spatial model 
improves the relationship. The same effect can be observed if covariates of different quality 
are included (Figures 4 and 5). Figure 3 underlines these results, by showing the squared 
deviance of the spatial and non-spatial models for all 4 covariates (upper plots) and no 
covariates (lower plots) on the map. If no covariates are included the spatial model performs 
better than the non-spatial model. This effect diminishes if all covariates are included.
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Table 2: Simulation results for the year 1989 .

spatial non-sp. spatial−non-sp.
non-sp.
spatial

1
49 ·

49
∑

i=1
((Estimatori −Truei)

2)

all 0,97 0,95 0,02 0,98
x1 4,53 4,81 -0,28 1,06
x2 12,14 21,83 -9,69 1,80
x3 3,89 5,14 -1,25 1,32
x4 17,27 27,38 -10,11 1,59

without 16,11 26,57 -10,46 1,65
1
49 ·

49
∑

i=1
(|Estimatori −Truei|)

all 0,82 0,81 0,01 0,98
x1 1,51 1,55 -0,04 1,02
x2 2,64 3,42 -0,79 1,30
x3 1,58 1,81 -0,23 1,15
x4 3,13 4,04 -0,91 1,29

without 3,16 3,97 -0,81 1,26
max(|Estimator−True|)

all 0,05 0,05 0,00 1,00
x1 0,14 0,14 0,00 1,02
x2 0,25 0,33 -0,08 1,30
x3 0,09 0,10 -0,01 1,07
x4 0,30 0,34 -0,04 1,12

without 0,25 0,34 -0,09 1,34

4. Conclusion

In this paper, we have developed a hierarchical Bayes methodology for an extension of
the well-celebrated Fay-Herriot model that incorporates spatial correlation using an intrinsic
CAR model. We have proved the propriety of the posterior distribution for our proposed
model. We have tested the effect of covariates on the estimation results. An application
to SAIPE data revealed that modeling spatial correlation can considerably improve on the
associated hierarchical Bayes methodology if the area specific auxiliary data are either weak
or not available. This effect diminishes if the quality of the area specific covariates improves.
Like Besag et al. (1991) we also assumed proper prior for the variance component. As
for the future research, it will be of interest to study the sensitivity of such proper prior
and to compare our hierarchical Bayes estimator with various empirical best predictors and
hierarchical Bayes estimators proposed in the literature that use non-intrinsic CAR model
extensions of the Fay-Herriot model.
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Figure 2: Predicted values of the spatial and non-spatial FH model compared to the official
estimates 1993: 4 and no covariates

Figure 3: Squared deviance of the spatial and non-spatial FH model for 4 (upper plots) and
no (lower plots) covariates.
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Figure 4: Predicted values of the spatial and non-spatial FH model compared to the official
estimates 1993: covariates x3, x4
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Figure 5: Predicted values of the spatial and non-spatial FH model compared to the official
estimates 1993: covariates x1, x2
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